Контрольная "Чисельне розв’язання задач оптимального керування"

Название:
Чисельне розв’язання задач оптимального керування
Тип работы:
Контрольная
Размер:
132.8 КБ
51
Скачать

Обмеження на керування введемо далі, під час реалізації чисельного методу. Відзначимо, що перед першим доданком стоїть знак «–», оскільки і якщо не додавати «–», то характер екстремуму початкової функції зміниться.

Розглянемо ітераційний метод пошуку оптимального керування задачі (4) – (7). Суть методу полягає в тому, що на кожній ітерації обчислюються два вектори: і . Перший із них містить -е наближення для керувань у моменти часу для системи (14), при , а другий – -е наближення для фазових станів системи в ці ж моменти часу. Отже, на кожній ітерації ми одержуємо процес , що є -м наближенням до шуканого оптимального процесу.

Контроль у методі подвійного перерахування полягає в повторному перерахуванні результатів задачі і порівнянні отриманих даних для різних значень кроку розбиття. У випадку розбіжності виконується корекція і обчислення повторюються.

Формули (1), (6) є окремими випадками відображення з (12). Очевидно, що відображення (1) для детермінованої задачі випливає з (12), якщо множина складається з єдиного елемента, а відображення (6) (для стохастичної задачі зі зліченним простором збурень) відповідає випадку, коли множина зліченна, а є -алгеброю, складеною із всіх підмножин .

Очевидно, що відображення з (12) задовольняє припущенню монотонності. Якщо на множини , і функції , і накласти вимоги вимірності, то витрати за кроків можна визначити в термінах звичайного інтегрування для будь-якої стратегії , для якої функції , вимірні.